Werbung

Google-Analytics-Daten für die Prognose von Touristenzahlen

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

Google-Analytics-Daten für die Prognose von Touristenzahlen

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
Webseiten für Reiseinformationen liefern Google Analytics Daten, die zu besseren und genaueren Vorhersagen von Touristenzahlen für Großstädte verwendet werden können – insbesondere für Zeitperioden zwischen den nächsten drei bis zwölf Monaten. Dies ist das soeben veröffentlichte Ergebnis eines an der Modul University Vienna durchgeführten Forschungsprojekts.
Modul University Vienna

Webseiten für Reiseinformationen liefern Google Analytics Daten, die zu besseren und genaueren Vorhersagen von Touristenzahlen für Großstädte verwendet werden können –  insbesondere für Zeitperioden zwischen den nächsten drei bis zwölf Monaten. Dies ist das soeben veröffentlichte Ergebnis eines an der Modul University Vienna durchgeführten Forschungsprojekts, in dem der Nutzen von ausgewählten Google-Analytics-Datensätzen für die Prognose künftiger Touristenzahlen für Großstädte analysiert wurde.

Das Projekt ist Teil eines auf den Nutzen neuer Medien für modernes Management ausgerichteten Forschungsfokus der Modul University Vienna.

Die Nutzung von Reiseinformationsseiten ist bei Personen begehrt, die sich für Reisen in näherer Zukunft interessieren. Google Analytics, eine Software für das Erfassen und Analysieren von Website-Nutzungen, sammelt Daten über das User-Verhalten und stellt anonyme Durchschnitts-Statistiken zur Verfügung. Diese Informationen werden derzeit hauptsächlich von IT-Abteilungen für die Optimierung des Webdesigns genutzt. Dr. Ulrich Gunter und Dr. Irem Önder vom Department of Tourism and Service Management an der MODUL University Vienna haben nun herausgefunden, dass diese Daten noch viel mehr Aussagekraft besitzen als bisher angenommen. Sie evaluierten die Aussagekraft dieser Daten im Blick auf die Prognose künftiger Touristenzahlen für Großstädte – einem bedeutsamen Faktor für das Ressourcenmanagement im Tourismus.

Web-Visits und Städtebesucher

„Wir analysierten die zentrale Website für Städtetourismus in Wien www.wien.info“, erläutert Dr. Gunter die in „Annals of Tourism Research“ publizierte Arbeit. „Insgesamt verwendeten wir elf Variablen für unsere Prognosemodelle. Zehn davon stammen von Google Analytics für Zugriffe auf diese Seite, dazu kommt die Gesamtzahl aller Ankünfte von Stadttouristen in Wien. Unsere Ergebnisse zeigen deutlich, dass die Ergänzung bestimmter Prognosemodelle mit Google-Analytics-Daten diese Modelle sehr aussagekräftig für das Vorhersagen künftiger Touristenzahlen für eine gegebene Destination machen können.“

Die von Dr. Gunter und Dr. Önder verwendeten Google-Analytics-Variablen umfassten die durchschnittliche Verweildauer pro Besuch und auf den einzelnen Seiten, die Bounce Rate, die Anzahl neuer Besuche und Site-Views, die Anzahl der wiederkehrenden User sowie derer, die von Social Media gekommen sind, die Anzahl aller Besuche sowie die Unique Page Views. All diese Daten wurden für den Zeitraum von August 2008 bis Oktober 2014 erhoben.

Viele Varibalen und ein Ergebnis

Verwendet wurden die Daten vom Team für sogenannte vektor-autoregressive (VAR) Modelle. Diese sind ökonometrische Vorhersagemodelle, die insbesondere für Anwendungen geeignet sind, bei denen mehrere sich gegenseitig beeinflussende Variablen berücksichtigt werden sollen. „Insgesamt konnten wir feststellen, dass Modelle, die Google-Analytics-Daten berücksichtigten, künftige Touristenzahlen besser vorhersagen können als jene, die das nicht tun. Insbesondere, wenn es um Vorhersagezeiträume von drei bis zwölf Monaten geht“, erklärt Dr. Önder. „Für kürzere Vorhersagezeiträume funktionierten Modelle ohne diese Daten besser.“ Zur eigentlichen Beurteilung der Vorhersagekraft der Modelle verglich das Team prognostizierte Touristenzahlen mit den tatsächlichen, die von der Datenbank TourMIS bereitgestellt wurden – einer führenden europäischen Datenbank für Touristeninformation, die von wissenschaftlichen Mitarbeitern der MODUL University Vienna entwickelt wurde.

„Die größte Herausforderung“, ergänzt Dr. Gunter, „war die schiere Menge an verfügbaren Daten. Es gelang uns, passende Methoden zur Datenreduktion und zur Kombination von Vorhersagemethoden anzuwenden, sodass wir alle zehn Datensätze von Google Analytics in unsere Modelle einspeisen konnten. Die umfangreiche Erfahrung an der MODUL University Vienna mit der Analyse von Big Data war dabei eine enorme Unterstützung – genauso wie die großzügige Zurverfügungstellung der Daten durch WienTourismus.“

Forschung ohne Grenzen

Tatsächlich zeigt dieses Projekt von Dr. Gunter und Dr. Önder sehr gut den interdisziplinären Ansatz der Forschung an der MODUL University Vienna: „Unsere Studierenden profitieren sehr von unseren umfangreichen wissenschaftlichen Aktivitäten“, erklärt Prof. Dr. Sabine Sedlacek, die vor kurzem zur Vizerektorin der MODUL University Vienna berufen wurde. „Wir brechen hier gerne die Grenzen der traditionell definierten Forschungsbereiche auf und kombinieren diese in neuer Weise mit dem Ziel, Lösungen für die globalen Probleme von morgen entwickeln zu können. Das Projekt meiner Kolleginnen und Kollegen ist ein tolles Beispiel. Die Analyse neuer Medien, Big Data Shrinkage und die Erforschung von Touristenströmen wurden kombiniert, um ein wirksames Tool für die Tourismusindustrie zu entwickeln. Das ist genau die Zielrichtung unserer Forschungsaktivitäten, die es uns ermöglicht, unseren Studierenden praxisnahe sowie wissenschaftlich-analytische Einblicke in Zukunftsthemen zu ermöglichen.“

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

Abonnieren
Benachrichtige mich bei
guest
0 Comments
Inline Feedbacks
View all comments

Andere Leser haben sich auch für die folgenden Artikel interessiert

Werbung

Redaktionsbrief

Tragen Sie sich zu unserem Redaktionsbrief ein, um auf dem Laufenden zu bleiben.

Werbung
Werbung

Aktuelle Ausgabe

Topthema: Auf dem daten Friedhof

Dark Data: Wirtschaftliche Chancen mit Cloud, KI und BI nutzen.

Mehr erfahren

Wir wollen immer besser werden!

Deshalb fragen wir SIE, was Sie wollen!

Nehmen Sie an unserer Umfrage teil, und helfen Sie uns noch besser zu werden!

zur Umfrage

Tragen Sie sich jetzt kostenlos und unverbindlich ein, um keinen Artikel mehr zu verpassen!

    * Jederzeit kündbar

    Entdecken Sie weitere Magazine

    Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

    Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.