Werbung

CeBIT: Social-Media-Analyse macht S-Bahn-Fahrt smart

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

CeBIT: Social-Media-Analyse macht S-Bahn-Fahrt smart

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
Forscher des Potsdamer Hasso-Plattner-Instituts (HPI) präsentieren auf der CeBIT (Halle 6, Stand D18) eine neue Analysesoftware, die jede S-Bahn-Fahrt smart machen kann. Durch blitzschnelle Auswertungen von Einträgen im Kurznachrichtendienst Twitter zeigen die Forscher, wie sich künftig Millionen von Nahverkehrskunden auf Unregelmäßigkeiten besser einstellen können.
Analyse-Software für die S-Bahn

Forscher des Potsdamer Hasso-Plattner-Instituts (HPI) präsentieren auf der CeBIT (Halle 6, Stand D18) eine neue Analysesoftware, die jede S-Bahn-Fahrt smart machen kann. Durch blitzschnelle Auswertungen von Einträgen im Kurznachrichtendienst Twitter zeigen die Forscher, wie sich künftig Millionen von Nahverkehrskunden auf Unregelmäßigkeiten besser einstellen können.

Gemeinsam mit der S-Bahn Berlin arbeitet das HPI daran, auftretende Beeinträchtigungen in Echtzeit zu analysieren. So kann etwa erkannt werden, welche Verkehrsereignisse zu welcher Zeit an bestimmten Orten gehäuft auftreten und gemeldet werden, um frühzeitig darauf reagieren zu können.

Hoher Aufwand bei der Datenanalyse

„Für Verkehrsunternehmen sind solche Auswertungen wichtig, bedeuten heutzutage jedoch sehr hohen Aufwand bei der Datenanalyse“, erläutert HPI-Direktor Prof. Christoph Meinel. Dank des HPI-Systems könne künftig sowohl schon bei der Verkehrsplanung als auch im laufenden Betrieb besser auf Engpässe und Unregelmäßigkeiten und deren Auswirkungen reagiert werden. Einen besonderen Vorteil erhoffen sich Wissenschaftler und Praktiker von der Möglichkeit, aus vergangenen Vorkommnissen aktuelle Ereignisse besser einschätzen zu können.

Datenanalyse im S-Bahn-Verkehr.

 

Frühzeitig Alternativen erkennen

„Ziel ist es, frühzeitig Alternativen zu erkennen, wenn plötzliche Störungen im Ablauf des öffentlichen Nahverkehrs Reisepläne aus dem Takt zu bringen drohen“, erläutert HPI-Projektleiter Dr. Matthieu-P. Schapranow. Er setzt zur permanenten Analyse von Tweets über aktuelle Betriebsstörungen mit seinem Team die am HPI erforschte In-Memory Database Technology ein. Sie ermöglicht es unter anderem, von Menschen geschriebene Texte in computerverständliche Informationen zu übersetzen. Damit können dank paralleler Verarbeitung selbst riesige Datenmengen blitzschnell analysiert und ausgewertet werden.

„Aus den Twitter-Kurznachrichten der S-Bahn extrahieren wir so zum Beispiel Informationen über betroffene Linien, Bahnhöfe oder Gründe, verknüpfen diese und errechnen in Echtzeit Prognosen für künftige Ereignisse“, erklärt Schapranow. Die HPI-Software könne jederzeit in Live-Statistiken anzeigen, was die häufigsten Arten von Vorfällen sind und zu welchen Tageszeiten welche Ereignisse für welche Linien besonders oft gemeldet werden. Nutzt ein Anwender die Informationen, die die S-Bahn Berlin den Kunden bereitstellen will, kann er sich angesichts der jeweiligen Situation auf die Wahl der Route und des Verkehrsmittels einstellen, um mit möglichst geringem Zeitverlust ans Ziel zu kommen. „Fahrgäste, denen mehreren Routen zur Wahl stehen, können künftig diejenige wählen, für die die geringste Wahrscheinlichkeit für störende Ereignisse prognostiziert wurde“, sagt Schapranow.

HPI-Projektleiter Dr. Matthieu-P. Schapranow.

 

Sofortige Analyse unstrukturierter  Texte

Herausforderung für die Informatiker am HPI ist die sofortige Analyse der unstrukturierten Texte, deren Kombination mit historischen Daten, sowie deren interaktive Exploration. Erste Erkenntnisse aus der Analyse zehntausender Tweets der Berliner S-Bahn seit Mitte 2013 ergaben bisher: Gut die Hälfte gibt Hinweise auf Ereignisse im Betriebsablauf. Meistens handelt es sich um Ausfälle oder Verspätungen von Zügen. Am häufigsten genannter Grund ist der „Polizeieinsatz“, gefolgt von „Notarzteinsatz“.

Die HPI-Wissenschaftler, deren Institut in unmittelbarer Nähe des S-Bahnhofs Griebnitzsee auf der Strecke Berlin-Potsdam liegt, brachten ihrer Softwareanwendung bei, selbst verschiedene Deklinationsformen, Abkürzungen und Umlautschreibweisen von Stichwörtern zu erkennen. Mit der sogenannten „fuzzy search“ oder unscharfen Suche werfen selbst Rechtschreibfehler in Tweets die clevere Potsdamer Analyse-Software nicht aus der Bahn. Diese Methode vergleicht zwei Wörter buchstabenweise, berechnet einen Ähnlichkeitswert und beurteilt danach, wie wahrscheinlich die Übereinstimmung mit einem relevanten Stichwort ist.

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

Abonnieren
Benachrichtige mich bei
guest
0 Comments
Inline Feedbacks
View all comments

Andere Leser haben sich auch für die folgenden Artikel interessiert

Werbung

Redaktionsbrief

Tragen Sie sich zu unserem Redaktionsbrief ein, um auf dem Laufenden zu bleiben.

Werbung
Werbung

Aktuelle Ausgabe

Topthema: Auf dem daten Friedhof

Dark Data: Wirtschaftliche Chancen mit Cloud, KI und BI nutzen.

Mehr erfahren

Wir wollen immer besser werden!

Deshalb fragen wir SIE, was Sie wollen!

Nehmen Sie an unserer Umfrage teil, und helfen Sie uns noch besser zu werden!

zur Umfrage

Tragen Sie sich jetzt kostenlos und unverbindlich ein, um keinen Artikel mehr zu verpassen!

    * Jederzeit kündbar

    Entdecken Sie weitere Magazine

    Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

    Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.