Business Analytics: 5 wichtige Trends bei Big Data für 2020

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

Business Analytics: 5 wichtige Trends bei Big Data für 2020

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
Für das nächste Jahr hat der Data-Analytics-Anbieter Qlik fünf grundlegende Trends im Bereich von Big Data und Data Analytics ausgemacht. Zu den wichtigsten gehören Wide Data, DataOps und Self Service Analytics sowie Shazamen von Daten.
Digitalisierung im Mittelstand

Quelle: Elnur/Shutterstock

Fünf Trends im Bereich von Business Analytics, Big Data und Data Analytics werden laut Qlik das nächste Jahr bestimmen. Zu den Entwicklungen gehören Wide Data, DataOps und Self Service Analytics sowie Shazamen von Daten.

1. Business Analytics: Aus Big Data wird Wide Data

Dank skalierbarer Cloud-Lösungen sind in Big-Data-Umgebungen nicht länger die Kapazitätslimits unterenehmensinterner IT-Infrastrukturen ein begrenzender Faktor. Die Herausforderung der Stunde lautet „Wide Data“. Die Aufmerksamkeit wendet sich den fragmentierten, weitverzweigten Datenlandschaften zu, die durch uneinheitliche oder fehlerhaft formatierte Daten sowie für sich stehende Datensilos entstanden sind.

Allein in den letzten fünf Jahren hat sich die Anzahl der Datenbanken, die es für unterschiedlichste Datenarten gibt, von 162 auf 342 verdoppelt. „Unternehmen, denen es künftig gelingt, diese Daten in einer Synthese sinnvoll zusammenzuführen, werden klar im Vorteil sein“, erklärt Wolfgang Kobek, Senior Vice President EMEA bei Qlik.

2. DataOps und Self Service Analytics: mehr Agilität für die Datennutzung

Während Data Analytics auf der Business-Ebene durch moderne BI-Technologie und Self-Service-Tools längst Einzug gehalten hat, fehlt es für das Datenmangement immer noch an agilen Möglichkeiten. Die Lösung heißt: „DataOps“. Dieser Ansatz macht es möglich, mit automatisierten und prozessorientierten Technologien die Geschwindigkeit und Qualität des Datenmanagements zu erhöhen. Dafür werden On-Demand IT-Ressourcen genutzt, Tests automatisiert und Daten bereitgestellt.

Technologien wie Echtzeit-Datenintegration, Change Data Capture (CDC) und Streaming Data Pipelines sind die Basis dafür. Dank DataOps können 80 Prozent der Kerndaten systematisch an Geschäftsanwender geliefert werden. Kobek: „Mit DataOps im operativen Datenmanagement und Self-Service Analytics auf der Business-Seite lässt sich ein fließender Prozess über die gesamte Informationswertschöpfungskette erreichen. Synthese und Analyse greifen ineinander.“

3. Business Analytics: intelligente Metadaten-Kataloge als Bindeglied

Die Nachfrage nach Datenkatalogen steigt, um Rohdaten in den verteilten und vielfältigen Datenbeständen zu lokalisieren, zu erfassen und zu synthetisieren. Im kommenden Jahr werden die Metadatenkataloge zunehmend mit KI austgestattet werden, um eine aktive, adaptive und schnelle Datenbereitstellung zu ermöglichen. Dies ist die Voraussetzung für die Agilität, die durch den Einsatz von DataOps und Self-Service-Analytik ermöglicht wird.

4. Aufbau von Datenkompetenz als Service-Leistung

Durch die Verknüpfung von Datensynthese und Datenanalyse lässt sich die Nutzung von Daten weiter vorantreiben. „Allerdings,“ so Kobek, „werden noch so gute Technologien oder Prozesse nichts bringen, wenn die Menschen nicht mit an Bord sind. Es reicht nicht aus, den Anwendern die Tools einfach nur zur Verfügung zu stellen und auf das Beste zu hoffen. Erfolgsentscheidend wird sein, den Mitarbeitern dabei zu helfen, sich mit dem Lesen, Arbeiten, Analysieren und Kommunizieren von Daten vertraut zu machen.“

Viele Unternehmen möchten im kommenden Jahr die Datenkenntnisse ihrer Mitarbeiter fördern und suchen dafür gezielt nach Partnern, die Software, Training sowie Support im SaaS-Modell (Software as a Serivce) anbieten. Das Ziel: Das Daten-Know-how so zu verbessern, dass DataOps und Self-Service Analytics ineinandergreifen können und sich datengestütztes Entscheiden bei den Mitarbeiter im Alltag durchsetzen kann.

5. Business Analytics: Shazamen von Daten

Die Fortschritte im Bereich Data-Analytics waren in den letzten Jahrzehnten enorm. Allerdings sehen Experten den größten Meilenstein noch kommen: Das „Shazamen“ von Daten. Die meisten von uns kennen Shazam, die berühmte App, die laufende Songs identifizieren und Informationen dazu bereit stellen kann. Dieses Konzept wird derzeit auf zahlreiche Bereiche ausgedehnt. „2020 werden wir ‚Shazamen‘ auch für Daten im Unternehmen erleben“, ist sich Kobek sicher.

„Es wird möglich sein, das Umfeld von Daten näher in Augenschein zu nehmen: Woher stammen sie, wer hat sie verwendet, welche Qualität haben sie und wie haben sie sich kürzlich verändert?“ Algorithmen werden den Analyse-Systemen helfen, Datenmuster zu erkennen, Anomalien nachzuvollziehen und neue Daten für weitere Analysen vorzuschlagen. Dadurch wird Data und Analytics schlanker werden und wir können zur richtigen Zeit mit den richtigen Daten arbeiten.“

Business Analytics: neue Möglichkeiten für Umgang mit Daten

„Eines steht fest: Der Umgang mit Daten wird in Zukunft weit über Suche, Dashboards und Visualisierung hinausgehen. Wir werden in der Lage sein, über alternative Eingabetechniken mit digitalen Geräten zu kommunizieren wie etwa über Gedanken, Bewegungen oder auch auf sensorischer Ebene. Der Kauf von CTRL Labs, dem Startup für Neuroschnittstellen, durch Facebook oder auch das Neuralink-Projekt von Elon Musk, das an der Mensch-Maschine-Interaktion arbeitet, sind erste Vorboten, was kommen wird. Im Jahr 2020 werden einige dieser bahnbrechenden Innovationen anfangen, unsere Erfahrung im Umgang mit Daten zu verändern. Darin liegen enorme Chancen für uns alle, es birgt aber die Gefahr von Missbrauch. Hier ist Veranwortungsbewusstsein gefragt,“ ist Kobek überzeugt.

„Eine ganzheitliche Betrachtung von Datenkompetenz und Ethik ist nötig, damit Menschen im Umgang mit Wide Data die richtigen Entscheidungen treffen können. DataOps und Self-Service sind die Trends, die dabei helfen, unternehmensweit verstreute Daten richtig zu nutzen, um im digitalen Zeitalter auch weiterhin erfolgreich zu sein.“ (sg)

Lesen Sie auch: Datenanalyse: Enormes Potenzial für den Mittelstand in Deutschland

Auch interessant: Intelligentes Datenmanagement: Erfolgsgarant für die Digitalisierung

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

avatar
  Abonnieren  
Benachrichtige mich bei

Andere Leser haben sich auch für die folgenden Artikel interessiert

Robotic Process Automation kommt bisher vor allem für Massenprozesse im Back-Office zum Einsatz. UiPath zeigt, wie sich die RPA-Technologie mit „Attended Robots“ als ein alltäglichen Hilfswerkzeug für Mitarbeiter nutzen lässt, unter anderem bei der Arbeit mit Textverarbeitungsprogrammen, Tabellenkalkulationen oder Präsentationssoftware.
Werbung

Top Jobs

Data Visualization App/BI Developer (m/f/d)
Simon-Kucher & Partners, Germany/Bonn or Cologne
› weitere Top Jobs
Werbung

Redaktionsbrief

Tragen Sie sich zu unserem Redaktionsbrief ein, um auf dem Laufenden zu bleiben.

Werbung
Werbung

Aktuelle Ausgabe

Topthema: Start-Up Radar

So finden Unternehmen die richtigen Partner für Sprung-Innovationen

Mehr erfahren

Tragen Sie sich jetzt kostenlos und unverbindlich ein, um keinen Artikel mehr zu verpassen!

* Jederzeit kündbar

Entdecken Sie weitere Magazine

Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.